| Topic name | Term | Skills developed | Link to subject Content | Prior learning | Next link in curriculum | |---|--------|--|--|---|-------------------------| | Transition Metals Reactions of lons in | Autumn | MS 4.1 and 4.2 Students understand and draw the shape of complex ions. PS 3.1 and 3.2 Students determine the concentration of a solution of copper(II) ions by colorimetry. AT d and k PS 1.2 Students could reduce vanadate(V) with zinc in acidic solution. AT b, d and k PS 4.1 AT d and k PS 4.1 Students could investigate Mn2+ as the autocatalyst in the reaction between ethanedioic acid and acidified potassium manganate(VII). AT d and K PS 1.2 Students could carry out | General properties of transition metals Substitution reactions Shapes of complex ions Formation of coloured ions Variable oxidation states Catalysis Aqua lons | A Level 3.1.3 Bonding 3.1.2 Amount of Substance 3.1.7 Redox Reactions | N/A N/A | | Aqueous Solution | Autumm | test-tube reactions of metal-aqua ions with NaOH, NH3 and Na2 CO3 Required Practical 11 Simple test tube reactions to Identify metal ions in aqueous solution | Aquations Hydrolysis with sodium hydroxide Hydrolysis with ammonia Amphoteric Nature | 4.8 Chemical Analysis A Level 3.2.5 Transition Metals | • IN/A | | Thermodynamics | Autumn | AT a, b and k PS 3.2 Students find ΔS for vaporization of water using a kettle. MS 2.2, 2.3 and 2.4 Students rearrange the equation ΔG = ΔH - TΔS to find unknown values. MS 3.3 Students determine ΔS and ΔH from a graph of ΔG versus T. | 1. Born-Haber cycles 2. Gibbs free-energy change, ΔG, and entropy change, ΔS | A Level • 3.1.4 Energetics | • N/A | ## **Curriculum Map - Year 13 - Chemistry (Teacher 1)** | Rate Equations | Spring | MS 0.0 and 2.4 Students use given rate data and deduce a rate equation, then use some of the data to calculate the rate constant including units. AT a, b, k and I PS 2.4 and 3.1 Students could determine the order of reaction for a reactant in the iodine clock reaction. MS 3.1 Students MS 3.3, 3.4 and 3.5 | Rate equations Determination of rate equation Required Practical 7 Measuring the rate of reaction by initial rate method and Continuous monitoring | GCSE 4.6 Rate of Reaction A Level • 3.3.5 Kinetics | • N/A | |---|--------|---|--|---|-------| | Equilibrium Constant
Kp for Homogeneous
Systems | Spring | MS 1.1 MS 2.2 and 2.3 Students calculate the partial pressures of reactants and products at equilibrium. Students calculate the value of an equilibrium constant K p | • Equilibrium Constant K _p | GCSE 4.6 Equilibria A Level 3.3.6 Equilibrium Constant K _c | • N/A | | Electrode Potentials | Spring | AT j and k PS 1.1 Students make simple cells and use them to measure unknown electrode potentials. AT a, b, j and k PS 2.1 and 2.4 Students carry out an experiment to investigate the effect of changing conditions, such as concentration or temperature, in a voltaic cell such as Zn Zn2+ Cu2+ Cu AT j and k PS 2.2 Required Practical 8 Measuring the EMF of an electrochemical cell | Electrode potentials
and cells Commercial
applications of
electrochemical cells | GCSE 4.4 Electrolysis A Level • 3.3.7 Redox Reactions | • N/A |