

Curriculum Map - Year 12 - Physics (Teacher 2)

Topic Name	Term	Skills Developed	Link to subject content	Prior learning	Next link in curriculum
3.5 Electricity	Autumn	Students can construct	3.5.1.1	Y9	Electric and magnetic
		circuits from			fields.
		the range of components.	1. Electric current as the rate of flow of charge	4.2.5.1 Static	
			2. Potential difference as work done per unit charge.	charge	F=BII
		MS 3.2, 4.3 / PS 1.2 / AT a,	3. Resistance defined as $R = V/I$	4.2.1 Current,	
		b, f, g Investigation of the			F=BQv
		variation of resistance of a	3.5.1.2	difference and	
		thermistor with	Current-voltage characteristics	resistance	Electric potential
		temperature.	For an ohmic conductor, semiconductor diode, and		
			filament lamp. Ohm's law as a special case where I \propto V	Y10	Capacitor charging
		MS 0.3 / PS 4.1 / AT a, b, f,	under constant physical conditions.		and discharging
		g Students can construct		Domestic	
		circuits with various	3.5.1.3	electricity	Motion of a charged
		component configurations	Resistivity = RA/ L		particle in a magnetic
		and measure currents and	Description of the qualitative effect of temperature on the		field.
		potential differences.	resistance of metal conductors and thermistors. Only		
			negative temperature coefficient (ntc) thermistors will be		AC theory
		MS 3.2 / PS 4.1 / AT f	considered. Applications of thermistors to include		
		Students can investigate	temperature sensors and resistance-temperature graphs.		
		the behaviour of a potential	Superconductivity as a property of certain materials which		
		divider circuit. MS 3.2 / AT	have zero resistivity at and below a critical temperature		
		g Students should design	which depends on the material. Applications of		
		and construct potential	superconductors to include the production of strong		
		divider circuits to achieve	magnetic fields and the reduction of energy loss in		
		various outcomes.	transmission of electric power.		
		MC 2 1 2 2 / DC 2 2 2 1 /	2 E 1 4 Circuita		
		MIS 5.1, 5.5 / PS 2.2, 5.1 /	D_{oristors} in corios $DT = D1 + D2 + D2$ is parallel 1 DT		
		Doguirod practical 4:	-1/D1 + 1/D2 + 1/D2		
		Investigation of the omf and	= 1/NI = 1/NZ = 1/NJ		
		internal resistance of	E = 1/4, $D = 1/2$ $E = 1/2$ $D = 1/2$ D		
		oloctric colls and batteries	$L = 1 \times L$, $r' = 1 \times - 1 \times R = 1 \times R$		
		by moscuring the variation	resistances in series and parallel sircuits including calls in		
		by measuring the variation	resistances in series and parallel circuits, including cells in		

Curriculum Map - Year 12 - Physics (Teacher 2)

		of the terminal pd of the cell with current in it.	 series and identical cells in parallel. Conservation of charge and conservation of energy in dc circuits. 3.5.1.5 Potential Divider The potential divider used to supply constant or variable potential difference from a power supply. The use of the potentiometer as a measuring instrument is not required. Examples should include the use of variable resistors, thermistors, and light dependent resistors (LDR) in the potential divider. 		
			3.5.1.6 Electromotive force and internal resistance V = E/Q, $E = IR + r$ Terminal pd; emf Students will be expected to understand and perform calculations for circuits in which the internal resistance of the supply is not negligible.		
3.2 Particles and radiation	Spring	AT i Demonstration of the range of alpha particles using a cloud chamber, spark counter or Geiger counter. MS 0.2 Use of prefixes for small and large distance measurements. AT i Detection of gamma radiation. MS 1.1, 2.2 Students could determine the frequency and wavelength of the two gamma photons produced when a 'slow' electron and a 'slow' positron annihilate each other.	 3.2.1 Particles 3.2.1 Particles 3.2.1.2 Stable and unstable nuclei The strong nuclear force; its role in keeping the nucleus stable; short-range attraction up to approximately 3fm, very-short range repulsion closer than approximately 0.5 fm. Unstable nuclei; alpha and beta decay. Equations for alpha decay, β- decay including the need for the neutrino. The existence of the neutrino was hypothesised to account for conservation of energy in beta decay. 3.2.1.3 Particle, antiparticles and photons For every type of particle, there is a corresponding antiparticle. Comparison of particle and antiparticle masses, charge and rest energy in MeV. 	Y10 Atomic Structure	Use of amu in Nuclear Physics (Y13) Alpha, beta and gamma radiation in Nuclear Physics

Curriculum Map – Year 12 – Physics (Teacher 2)

The PET scanner could be	Students should know that the positron, antiproton.	
used as an application of	antineutron and antineutrino are the antiparticles of the	
annihilation.	electron, proton, neutron and neutrino respectively.	
	Photon model of electromagnetic radiation, the Planck	
PS 1 2	constant $F = h f$	
Momentum transfer of a	Knowledge of annihilation and pair production and the	
heavy ball thrown from one	energies involved	
person to another		
	3 2 1 4 Particle interactions	
ATK	Four fundamental interactions: gravity_electromagnetic	
Use of computer	weak nuclear strong nuclear (The strong nuclear force	
simulations of particle	may be referred to as the strong interaction.) The concept	
collisions	of exchange particles to explain forces between	
ATI Cosmic ray showers as	elementary particles. Knowledge of the gluon, 70 and	
a source of high energy	graviton will not be tested. The electromagnetic force	
particles including pions and	virtual photons as the exchange particle. The weak	
kaons: observation of strav	interaction limited to β - and β + decay electron capture	
tracks in a cloud chamber.	and electron–proton collisions: W + and W – as the	
use of two Geiger counters	exchange particles. Simple diagrams to represent the	
to detect a cosmic ray	above reactions or interactions in terms of incoming and	
shower	outgoing particles and exchange particles	
	outgoing particles and exchange particles.	
	3.2.1.5 Particle Classification	
	Hadrons are subject to the strong interaction. The two	
	classes of hadrons: • baryons (proton, neutron) and	
	antibaryons (antiproton and antineutron) • mesons (pion,	
	kaon). Baryon number as a quantum number. Conservation	
	of baryon number. The proton is the only stable baryon	
	into which other baryons eventually decay. The pion as	
	the exchange particle of the strong nuclear force. The	
	kaon as a particle that can decay into pions. Leptons:	
	electron, muon, neutrino (electron and muon types only)	
	and their antiparticles. Lepton number as a quantum	
	number; conservation of lepton number for muon leptons	

Curriculum Map - Year 12 - Physics (Teacher 2)

		-		
			and for electron leptons. The muon as a particle that decays into an electron. Strange particles Strange particles as particles that are produced through the strong interaction and decay through the weak interaction (eg kaons). Strangeness (symbol s) as a quantum number to reflect the fact that strange particles are always created in pairs. Conservation of strangeness in strong interactions. Strangeness can change by 0, +1 or -1 in weak interactions. Appreciation that particle physics relies on the collaborative efforts of large teams of scientists and engineers to validate new knowledge. 3.2.1.6 Quarks and antiquarks Properties of quarks and antiquarks: charge, baryon number and strangeness. Combinations of quarks and antiquarks required for baryons (proton and neutron only), antibaryons (antiproton and antineutron only) and mesons (pion and kaon only). The decay of the neutron should be known. 3.2.1.7 Application of conservation laws Change of quark character in β - and in β + decay. Application of the conservation laws for charge, baryon number, lepton number and strangeness to particle interactions. The necessary data will be provided in questions for particles outside those specified. Students should recognise that energy and momentum are	
			conserved in interaction.	
3.2 Particles and radiation	Summer	PS 3.2 / MS 2.3 Demonstration of the	3.2.2 Radiation	Turning points (Y13 option) uses wave-
		photoelectric effect using a	3.2.2.1 The photoelectric effect	particle duality in
		photocell or an	Threshold frequency; photon explanation of threshold	exploring how
		electroscope with a zinc	frequency. Work function, stopping potential.	scientific theories are
			Photoelectric equation: h f = work function + Ek max	accepted or rejected.

Curriculum Map – Year 12 – Physics (Teacher 2)

plate attachment and UV lamp. AT j / MS 0.1, 0.2 Observation of line spectra using a diffraction grating.	3.2.2.2 Collisions of electrons with atoms Ionisation and excitation; understanding of ionisation and excitation in the fluorescent tube. The electron volt. Students will be expected to be able to convert eV into J and vice versa.	
PS 1.2 Demonstration using an electron diffraction tube. MS 1.1, 2.3 Use prefixes	3.2.2.3 Energy levels and photoemission Line spectra (eg of atomic hydrogen) as evidence for transitions between discrete energy levels in atoms. h f = E1 – E2	
when expressing wavelength values.	 3.2.2.4 Wave-particle duality Students should know that electron diffraction suggests that particles possess wave properties and the photoelectric effect suggests that electromagnetic waves have a particulate nature. Details of particular methods of particle diffraction are not expected. de Broglie wavelength = h/ mv where mv is the momentum. Students should be able to explain how and why the amount of diffraction changes when the momentum of the particle is changed. Appreciation of how 	
	momentum of the particle is changed. Appreciation of how knowledge and understanding of the nature of matter changes over time. Appreciation that such changes need to be evaluated through peer review and validated by the scientific community.	