| Topic name | Term | Skills developed | Link to subject content | Prior learning | Next link in curriculum | |------------------|--------|---|---|---|--| | Atomic Structure | Autumn | MS 1.1 Students report calculations to an appropriate number of significant figures, given raw data quoted to varying numbers of significant figures. MS 1.2 Students calculate weighted means eg calculation of an atomic mass based on supplied isotopic abundances. MS 3.1 Students interpret and analyse spectra. | Atomic Structure Electron configuration and energy level diagrams ToF Mass Spectrometry Trends in ionisation energies | 4.1 Atomic Structure and the Periodic Table 4.2 Chemical Analysis | 3.2.5 Transition Metals (Y13) Redox Titration Calculations 3.2.1 Periodicity 3.3.6 Organic Analysis | | Bonding | Autumn | PS 1.1 Students could be asked to find the type of structure of unknowns by experiment MS 0.3 and 4.1 Students could be given familiar and unfamiliar examples of species and asked to deduce the shape according to valence shell electron pair repulsion (VSEPR) principles. | Ionic bonding Nature of covalent and dative covalent bonds Metallic bonding Bonding and physical properties Shapes of Molecules Bond polarity Intermolecular forces | 4.1 Atomic structure and the Periodic Table 4.2 Structure and Bonding | 3.2.4 Period 3 and their oxides (Y13) When discussing melting and boiling points of Period 3 and their oxides in relation to their structure. 3.2.5 Transition Metals (Y13) When discussing shapes of complex ions. | | Energetics | Spring | MS 0.0 Recognise and
make use of | • Enthalpy cha | ange (ΔH) | GCSE | 3.3.8 Thermodynamics | |------------|--------|---|--|----------------------------|-------------------------|-------------------------| | | | appropriate units in calculation | Calorimetry | | 4.4 Chemical
Changes | | | | | • Practical Skills 2.4, 3.1, 3.2, 3.3 and 4.1 | ApplicationsBond enthal | of Hess's law
pies | 4.5 Energy Changes | | | | | MS 2.4 Students
carry out Hess's law
calculations. | | | | | | | | • AT a and k PS 2.4, 3.2 and 4.1 Students could be asked to find ΔH for a reaction using Hess's law and calorimetry, then present data in appropriate ways. | | | | | | | | Required practical 2 Measurement of an enthalpy change. | | | | | | Kinetics | Spring | AT a, b, k and I PS 2.4 and 3.1 Students | Collision The | eory | GCSE | 3.2.5 Transition metals | | | | could investigate the effect of temperature | • Maxwell-Bo | Itzmann Distribution | 4.5 Energy changes | | | | | on the rate of reaction | • Effect of ter | mperature on reaction rate | 4.6 Rates of Reaction | | | | | AT a, e, k and i | Effect of cor | ncentration and pressure | | | | | | Students could investigate the effect of changing the concentration of acid | • Catalysts | | | | | | | on the rate of a reaction. | | | | |--|-------|---|---|--|--| | Chemical Equilibria,
Le Chatelier's
Principle and Kc | In ra | estimate the effect of changing experimental parameters on a measurable value MS 1.1 Students report calculations to an appropriate number of significant figures. | Chemical equilibria and Le Chatelier's principle Equilibrium constant Kc for homogeneous systems | GCSE 4.6 Rate of reaction 4.10 Using Resources | 3.1.10 Equilibrium
Constant Kp for
homogenous
systems (Y13) | | Oxidation, Reduction and Redox Equations. | Summer | | • | Oxidation and reduction Oxidation states Redox equations | GCSE 4.4 Chemical Changes | 3.2.5 Transition Metals (Y13) Variable Oxidation states of transition metals. | |---|--------|--|---|--|--|---| | Group 7- The Halogens. | Summer | • AT d and k PS 2.2 Required practical 4 Carry out simple test- tube reactions to identify: Cations – Group 2, NH4 + Anions – Group 7 (halide ions), OH–, CO3 2–, SO4 2– | • | Trends in properties Uses of chlorine and chlorate(I) | GCSE 4.1 Atomic Structure & The Periodic Table A Level 3.1.7 Redox | • 3.2.1 Periodicity. | | Periodicity | Summer | | • | Classification Physical properties of period 3 elements | GCSE 4.1 Atomic Structure & The Periodic Table 4.2 Structure & Bonding | • 3.2.1 Period 3 and their Oxides (Y13) |