

7 7 0

0 9% 0

Mathematics is a highly interwoven subject. This curriculum map outlines just some of the next links stemming from each topic.

Topic name	Term	Skills developed	Next link in curriculum
Regression and Correlation	Autumn	 Understand exponential models in bivariate data Use a change of variable to estimate coefficients in an exponential model Understand and calculate the product moment correlation coefficient Carry out a hypothesis test for zero correlation 	 Normal Distribution (continuation of exploring various Hypothesis Tests) Y13
Functions and Graphs	Autumn	 Understand and use the modulus function Understand mappings and functions, and use domain and range Combine two or more functions to make a composite function Know how to find the inverse of a function graphically and algebraically Sketch the graphs of the modulus functions y = f(x) and y = f(x) Apply a combination of two (or more) transformations to the same curve Transform the modulus function 	• Parametric Equations Y13
Algebraic Methods	Autumn	 Use proof by contradiction to prove true statements Multiply and divide two or more algebraic fractions Add or subtract two or more algebraic fractions Convert an expression with linear factors in the denominator into partial fractions Divide algebraic expressions Convert an improper fraction into partial fraction form 	• Sequences and Series Y13
Moments	Autumn	 Calculate the turning effect of a force applied to a rigid body Calculate the resultant moment of a set of forces acting on a rigid body Solve problems involving uniform rods in equilibrium Solve problems involving non-uniform rods Solve problems involving rods on the point of tilting 	• Forces and Friction Y13

• 7 4

0 9% 0

Binomial Expansion	Autumn	 Expand (1 + x)ⁿ for any rational constant n and determine the range of values of x for which the expansion is valid Expand (a + bx)ⁿ for any rational constant n and determine the range of values of x for which the expansion is valid Use partial fractions to expand fractional expressions 	• Integration Y13
Sequences and Series	Autumn	 Find the <i>n</i>th term of an arithmetic sequence Prove and use the formula for the sum of the first <i>n</i> terms of an arithmetic series Find the <i>n</i>th term of a geometric sequence Prove and use the formula for the sum to infinity of a convergent geometric sequence Use sigma notation to describe series Generate sequences from recurrence relations Model real-life situations with sequences and series 	 Numerical Methods in Further Education
Forces and Friction	Autumn	 Resolve forces into components Use the triangle law to find a resultant force Solve problems involving smooth or rough inclined planes Understand friction and the coefficient of friction Use F ≤ μR 	• Applications of Forces Y13
Radians	Autumn	 Convert between degrees and radians and apply this to trigonometric graphs and their transformations Know exact values of angles measured in radians Find an arc length using radians Find areas of sectors and segments using radians Solve trigonometric equations in radians Use approximate trigonometric values when θ is small 	 Trigonometry and Modelling Y13
Trigonometric Functions	Autumn	 Understand the definitions or secant, cosecant and cotangent and their relationship to cosine, sine and tangent Understand the graphs of secant, cosecant and cotangent and their domain and range Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent 	 Trigonometry and Modelling Y13

N Q # 9, 0 7 d

		 Prove and use sec²x ≡ 1 + tan²x and cosec²x ≡ 1 + cot²x Understand and use inverse trigonometric functions and their domain and ranges 	
Trigonometry and Modelling	Autumn	 Prove and use the addition formulae Understand and use the double-angle formulae Solve trigonometric equations using the double-angle and addition formulae Write expressions of the form <i>a</i> cos θ ± <i>b</i> sin θ in the forms <i>R</i> cos(θ ± α) or <i>R</i> sin(θ ± α) Prove trigonometric identities using a variety of identities Use trigonometric functions to model real-life situations 	Differentiation Y13Integration Y13
Parametric Equations	Autumn	 Convert parametric equations into Cartesian form by substitution Convert parametric equations into Cartesian form using trigonometric identities Understand and use parametric equations of curves and sketch parametric curves Solve coordinate geometry problems involving parametric equations Use parametric equations in modelling in a variety of contexts 	• Differentiation (Part 2) Y13
Differentiation (Part 1)	Autumn	 Differentiate trigonometric functions Differentiate exponentials and logarithms Differentiate functions using the chain, product and quotient rules 	Integration Y13Differentiation (Part 2) Y13
Conditional Probability	Autumn	 Understand set notation in probability Understand conditional probability Solve conditional probability problems using two-way tables and Venn diagrams Use probability formulae to solve problems Solve conditional probability using tree diagrams 	• Normal Distribution Y13

Q = 9, V = d

Normal Distribution	Spring	 Understand the normal distribution and the characteristics of a normal distribution curve Find percentage points on a standard normal curve Calculate values on a standard normal curve Find unknown means and/or standard deviations for a normal distribution Approximate a binomial distribution using a normal distribution Select appropriate distributions and solve real-life problems in context Carry out a hypothesis test for the mean of a normal distribution 	• Statistics in Further Education or Further Maths A-level Statistics (Discrete random variables and other distributions)
Integration	Spring	 Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form <i>f</i>(<i>ax</i> + <i>b</i>) Use trigonometric identities in integration Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution, using integration by parts and using partial fractions Use integration to find the area under a curve Use the trapezium rule to approximate the area under a curve Solve simple differential equations and model real-life situations with differential equations 	• Calculus in Further Education (Physics and Mathematics) and in Further Mathematics A-level
Differentiation (Part 2)	Spring	 Differentiate parametric equations Differentiate functions which are defined implicitly Use the second derivative to describe the behaviour of a function Solve problems involving connected rates of change and construct simple differential equations 	• Calculus in Further Education (Physics and Mathematics) and in Further Mathematics A-level

Q = 9, V = d

Projectiles	Spring	 Model motion under gravity for an object projected horizontally Resolve velocity into components Solve problems involving particles projected at an angle Derive the formulae for time of flight, range and greatest height, and the equation of the path of a projectile 	• Further Kinematics Y13
Vectors	Spring	 Understand 3D Cartesian coordinates Use vectors in three dimensions Use vectors to solve geometric problems Model 3D motion in mechanics with vectors 	• Vectors in Further Mathematics or Mechanics in Further Education (Engineering, Physics and Mathematics)
Numerical Methods	Spring	 Locate roots of f(x) = 0 by considering changes of sign Use iteration to find an approximation to the root of the equation f(x) = 0 Use the Newton-Raphson procedure to find approximations to the solutions of equations of the form f(x) = 0 Use numerical methods to solve problems in context 	 Further Education (Computing, Engineering, Physics and Mathematics)
Applications of Forces	Spring/Summer	 Find an unknown force when a system is in equilibrium Solve statics problems involving weight, tension and pulleys Understand and solve problems involving limiting equilibrium Solve problems involving connected particles that require the resolution of forces 	 Mechanics in Further Education (Engineering, Physics and Mathematics)
Further Kinematics	Summer	 Work with vectors for displacement, velocity and acceleration when using the vector equations of motion Use calculus with harder functions of time involving variable acceleration Differentiate and integrate vectors with respect to time 	 Mechanics in Further Education (Engineering, Physics and Mathematics)