Mathematics is a highly interwoven subject, this curriculum maps attempts to highlight only some of the key links.

Topic name	Term	Skills developed	Next link in curriculum
Algebraic Expressions	Autumn	- Multiply and divide integer powers - Expand a single term over brackets and collect like terms - Expand the product of two or three expressions - Factorise linear, quadratic and simple cubic expressions - Know and use the laws of indices - Simplify and use the rules of surds - Rationalise denominators	- Quadratics Y12
Quadratics	Autumn	- Solve quadratic equations using factorisation, the quadratic formula and completing the square - Read and use $f(x)$ notation when working with functions - Sketch the graph and find the turning point of a quadratic function - Find and interpret the discriminant of a quadratic expression - Use and apply models that involve quadratic functions	- Graphs and Transformations Y12
Equations and Inequalities	Autumn	- Solve linear simultaneous equations using elimination or substitution - Solve simultaneous equations: one linear and one quadratic - Interpret algebraic solutions of equations graphically - Solve linear inequalities - Solve quadratic inequalities - Interpret inequalities graphically - Represent linear and quadratic inequalities graphically	- Straight Line Graphs Y12
Graphs and Transformations	Autumn	- Sketch cubic graphs - Sketch quartic graphs - Sketch reciprocal graphs of the form $y=\frac{a}{x}$ and $y=\frac{a}{x^{2}}$ - Use intersection points of graphs to solve equations - Translate graphs - Stretch graphs - Transform graphs of unfamiliar functions	- Straight Line Graphs Y12 - Circles Y12

- Calculate the gradient of a line joining a pair of points
- Understand the link between the equation of a line, and its gradient and intercept
- Find the equation of a line given (i) the gradient and one point on the line or (ii) two points on the line
- Circles Y12
- Find the point of intersection for any pair of straight lines
- Know and use the rules for parallel and perpendicular gradients
- Solve length and area problems on coordinate grids
- Use straight line graphs to construct mathematical models
- Find the midpoint of a line segment
- Find the equation of the perpendicular bisector to a line segment
- Know how to find the equation of a circle
- Solve geometrical problems involving straight lines and circles
- Use circle properties to solve problems on coordinate grids
- Find the angle in a semicircle and solve other problems involving circles and triangles
- Understand how the concept of a mathematical model applies to mechanics
- Understand and be able to apply some of the common assumptions used in mechanical models
- Know SI units for quantities and derived quantities used in mechanics
- Know the difference between a scalar and vector quantities
- Understand 'population', 'sample' and 'census', and comment on the advantages and disadvantages of each
- Understand the advantages and disadvantages of simple random sampling, systematic sampling, stratified sampling, quota sampling and opportunity sampling
- Define qualitative, quantitative discrete and continuous data, and understand grouped data
- Understand the large data set
- Functions and Graphs Y13
- Constant Acceleration Y12
- Underpins all KS5 Mechanics
- Measures of Location and Spread Y12
- Calculate measures of central tendency such as the mean, median and mode
- Calculate measures of location such as percentiles and deciles
- Calculate measures of spread such as range, interquartile range and interpercentile range
- Calculate variance and standard deviation
- Understand and use coding
- Cancel factors in algebraic fractions
- Divide a polynomial by a linear expression
- Use the factor theorem to factorise a cubic expression
- Use Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions
- Use combinations and factorial notation
- Use the binomial expansion to expand brackets
- Find individual coefficients in a binomial expansion
- Make approximations using the binomial expansions
- Find the derivative, $f^{\prime}(x)$ or $\frac{d y}{d x}$, of a simple function
- Use the derivative to solve problems involving gradients, tangents and normal
- Identify increasing and decreasing functions

Differentiation	Autumn
Proof	Autumn

- Find the second order derivative, $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$ of a simple function
- Find stationary points of functions and determine their nature
- Sketch the gradient function of a given function
- Model real-life situations with differentiation
- Construct mathematical proofs using algebra
- Use proof by exhaustion and disproof by counter-example
- Use proof by contradiction to prove true statements
- Probability Y12
- Representations of Data Y12
- Algebraic Methods Y13
- Binomial Expansion (Year 13) - This is a different type of expansion that is explored
- Differentiation (Year 13)
- Integration Y12 and 13
- Variable Acceleration Y12
- Various topics such as Trigonometry require well-presented and logical arguments in "Show that" questions Y12

Constant Acceleration	Autumn	- Understand and interpret displacement-time graphs - Understand and interpret velocity-time graphs - Derive the constant acceleration formulae and use them to solve problems - Use the constant acceleration formulae to solve problems involving vertical motion under gravity	- Variable Acceleration Y12 - Projectiles Y13 (working in 2 Dimensions)
Representations of Data	Autumn	- Identify outliers in data sets - Draw and interpret boxplots - Draw and interpret cumulative frequency diagrams - Draw and interpret histograms - Compare two data sets	- Correlation Y12
Trigonometric Ratios	Spring	- Use the cosine rule to find a missing side or angle - Use the sine rule to find a missing side or angle - Find the area of a triangle using an appropriate formula - Solve problems involving triangles - Sketch the graphs of the sine, cosine and tangent functions - Sketch simple transformations of these graphs	- Trigonometric Identities and Equations Y12 - Radians Y13
Trigonometric Identities and Equations	Spring	- Calculate the sine, cosine and tangent of any angle - Know the exact trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° - Know and use the relationships $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$ - Solve simple trigonometric equations of the forms $\sin \theta=k, \cos \theta=k$ and $\tan \theta=k$ - Solve more complicated trigonometric equations of the forms $\sin n \theta=k$ and $\sin (\theta \pm \alpha)=k$ and equivalent equation involving cos and tan - Solve trigonometric equations that produce quadratics	- Trigonometric Functions Y13
Integration	Spring	- Find y given $\frac{d y}{d x}$ for x^{n} - Integrate polynomials - Find $f(x)$, given $f^{\prime}(x)$ and a point on the curve - Evaluate a definite integral - Find the area bounded by a curve and the x-axis - Find areas bounded by curves and straight lines	- Integration Y13

Exponentials and Logarithms	Spring	- Sketch graphs of the form $y=a^{x}, y=e^{x}$, and transformations of these - Differentiate $e^{k x}$ and understand why this result is important - Use and interpret models that use exponential functions - Recognise the relationship between exponents and logarithms - Recall and apply the laws of logarithms - Solve equations of the form $a^{x}=b$ - Describe and use the natural logarithm function - Use logarithms to estimate the values of constants in non-linear models	- Regression, Correlation and Hypothesis Testing Y13 - Various other topics Y13
Correlation	Spring	- Draw and interpret scatter diagrams for bivariate data - Interpret correlation and understand that it does not imply causation - Interpret the coefficients of a regression line equation for bivariate data - Understand when you can use a regression line to make predictions	- Regression, Correlation and Hypothesis Testing Y13
Probability	Spring	- Calculate probabilities for single events - Draw and interpret Venn Diagrams - Understand mutually exclusive and independent events, and determine whether two events are independent - Use and understand tree diagrams - Understand set notation in probability - Understand conditional probability - Solve conditional probability problems using two-way tables and Venn diagrams	- Statistical Distributions Y12
Forces and Motion	Spring	- Draw force diagrams and calculate resultant forces - Understand and use Newton's first law - Calculate resultant forces by adding vectors - Understand and use Newton's second law, $F=m a$ - Apply Newton's second law to vector forces and acceleration - Understand and use Newton's third law - Solve problems involving connected particles	- Moments Y13 - Forces and Friction Y13

- Use vectors in two dimensions
- Use column vectors and carry out arithmetic operations on vectors
- Calculate the magnitude and direction of a vector
- Understand and use position vectors
- Use vectors to solve geometric problems
- Understand vector magnitude and use vectors in speed and distance calculations
- Use vectors to solve problems in context
- Understand that displacement, velocity and acceleration may be given as functions of time
- Use differentiation to solve kinematics problems
- Use calculus to solve problems involving maxima and minima
- Use integration to solve kinematics problems
- Use calculus to derive constant acceleration formulae
- Understand and use simple discrete probability distributions including the discrete uniform distribution
- Understand the binomial distribution as a model and comment on appropriateness
- Calculate individual probabilities for the binomial distribution
- Calculate cumulative probabilities for the binomial distribution
- Understand the language and concept of hypothesis testing
- Understand that a sample is used to make an inference about a population
- Find critical values of a binomial distribution using tables
- Carry out a one-tailed test for the proportion of the binomial distribution and interpret the results
- Carry out a two-tailed test for the proportion of the binomial distribution and interpret the results
- Mechanics Y13
- Vectors Y13
- Further Kinematics Y13
- Hypothesis Testing Y12
- Further Hypothesis Testing in Y13 Statistics (e.g. Normal Distribution)

