

Topic Name	Term	Skills developed	Link to NC subject content	Prior learning	Next link in curriculum
3.1 Biological	Autumn	CARBOHYDTRATES	All life on Earth shares a common	Links from GCSE:	3.2.3 transport
molecules.	term, Year	AT f Students could use, and interpret the	chemistry. This provides indirect		across cell
	12	results of, qualitative tests for reducing	evidence for evolution. Despite	KS4 YEAR 10	membranes.
		sugars, non-reducing sugars and starch.	their great variety, the cells of all	4.1.3.2 Osmosis	
			living organisms contain only a	4.2.2.1 The	3.3.1 Digestion and
		AT g Students could use chromatography,	few groups of carbon-based	human digestive	absorption
		with known standard solutions, to separate a	compounds that interact in	system	
		mixture of monosaccharides and identify	similar ways.	4.1.3.2 Plant	3.4.1 DNA, genes
		their components.		organ systems –	and chromosomes.
			Carbohydrates are commonly	xylem	
		AT c Students could produce a dilution series	used by cells as respiratory	4.4.1.3 Uses of	3.4.2 DNA and
		of glucose solution and use colorimetric	substrates. They also form	glucose from	protein synthesis.
		techniques to produce a calibration curve	structural components in plasma	photosynthesis.	
		with which to identify the concentration of	membranes and cell walls.	4.4.2.3	3.3.4.2 Mass
		glucose in an unknown solution.		Metabolism	transport in plants
		LIPIDS	Lipids have many uses, including		
			the bilayer of plasma membranes, certain hormones and as	KS4 YEAR 11	
		AT f Students could use, and interpret the		4.6.1.4 DNA and	
		results of, the emulsion test for lipids.	respiratory substrates.	the genome 4.6.1.5 DNA	
		PROTEINS	Proteins form many cell	structure	
		AT f Students could use, and interpret the	structures. They are also	Structure	
		results of, a biuret test for proteins.	important as enzymes, chemical		
		AT g Students could use chromatography	messengers and components of		
		with known standard solutions, to separate a	the blood.		
		mixture of amino acids and identify their			
		components.	Nucleic acids carry the genetic		
		ENZYMES	code for the production of		
		MS 0.5 Students could be given the	proteins. The genetic code is		
		hydrogen ion concentration of a solution in	common to viruses and to all		
		order to calculate its pH, using the formula:	living organisms, providing		

Topic Name	Term	Skills developed	Link to NC subject content	Prior learning	Next link in curriculum
		 pH = -log10 H+ PS 2.4 Students could identify the variables that must be controlled in their investigation into rate of reaction. PS 3.3 Students could calculate the uncertainty of their measurements of the rate of reaction. MS 3.2 Students could select an appropriate format for the graphical presentation of the results of their investigation into the rate of enzyme-controlled reactions. MS 3.6 Students could use a tangent to find the initial rate of an enzyme-controlled reaction. Required practical 1: Investigation into the effect of a named variable on the rate of an enzyme-controlled reaction. NUCLEIC ACIDS MS 0.3 Students could use incomplete information about the frequency of other bases. 	 evidence for evolution. The most common component of cells is water; hence our search for life elsewhere in the universe involves a search for liquid water. 3.1.1 Monomers and polymers 3.1.2 Carbohydrates 3.1.3 Lipids 3.1.4. Proteins 3.1.4.2 Enzymes 3.1.5.1 Nucleic acids 3.1.5.2 DNA replication 3.1.6 ATP 3.1.7 Water 3.1.8 Inorganic ions 		
3.3. Organisms exchange substances with their environment.	Spring and summer term, Year 12	Surface area to volume ratio PS 1.1 Students could use agar blocks containing indicator to determine the effect of surface area to volume ratio and concentration gradient on the diffusion of an acid or alkali. MS 4.1 Students could be given the	The internal environment of a cell or organism is different from its external environment. The exchange of substances between the internal and external environments takes place at exchange surfaces. To truly enter	Links from GCSE: KS4 YEAR 10 4.1.3.1 Diffusion 4.4.2 Respiration 4.2.2.1 The human digestive system	3.5.1Photosynthesis3.6.1.3control of heart rate

Topic Name	Term	Skills developed	Link to NC subject content	Prior learning	Next link in curriculum
		dimensions of cells with different shapes	or leave an organism, most	4.2.3 Plant	3.6.4 Homeostasis
		from which to calculate the surface area to	substances must cross cell	tissues, organs	
		volume ratios of these cells.	plasma membranes. In large	and systems	
			multicellular organisms, the	3.2.2.2 The heart	
		Gas exchange	immediate environment of cells is	and blood vessels	
		AT j Students could dissect mammalian lungs,	some form of tissue fluid.	3.2.2.3 Blood	
		the gas exchange system of a bony fish or of		3.2.2.4 CHD	
		an insect.	Most cells are too far away from	4.4.2 Respiration	
			exchange surfaces, and from		
		AT d Students could use an optical	each other, for simple diffusion		
		microscope to:	alone to maintain the	KS4 YEAR 11	
		• examine prepared mounts of gas exchange	composition of tissue fluid within	4.5.1 Homeostasis	
		surfaces of a mammal, fish and insect, or	a suitable metabolic range. In	4.7.1.4	
		temporary mounts of gills	large organisms, exchange	Adaptations	
		• examine vertical sections through a	surfaces are associated with		
		dicotyledonous leaf.	mass transport systems that		
		AT b Students could use three-way taps,	carry substances between the		
		manometers and simple respirometers to	exchange surfaces and the rest		
		measure volumes of air involved in gas	of the body and between parts		
		exchange. MS 2.2 Students could be given	of the body.		
		values of pulmonary ventilation rate (PVR)			
		and one other measure, requiring them to	Mass transport maintains the		
		change the subject of the equation: PV R =	final diffusion gradients that		
		tidal volume × breathing rate	bring substances to and from the		
			cell membranes of individual		
		Digestion and absorption	cells. It also helps to maintain the		
		PS 1.1 Students could:	relatively stable environment that		
		• design and carry out investigations into the	is tissue fluid.		
		effect of a pH or bile salts on the rate of			
		reaction catalysed by a digestive enzyme	3.3.1 Surface area to volume		
		 use Visking tubing models to investigate 	ratio		

Topic Name	Term	Skills developed	Link to NC subject content	Prior learning	Next link in curriculum
		 the absorption of the products of digestion. Mass transport in animals AT h Students could design and carry out an investigation into the effect of a named variable on human pulse rate or on the heart rate of an invertebrate, such as Daphnia. MS 2.2 Students could be given values of cardiac output (CO) and one other measure, requiring them to change the subject of the equation: CO = stroke volume × heart rate Required practical 5: Dissection of animal or plant gas exchange system or mass transport system or of organ within such a system. Mass transport in plants AT b Students could set up and use a potometer to investigate the effect of a named environmental variable on the rate of transpiration. 	3.3.2 Gas exchange 3.3.3 Digestion and absorption 3.3.4 Mass transport in animals and plants		