Topic name	Term	Skills developed	Prior learning	Next link in curriculum
Algebraic fractions and surds	Autumn	- Learn how to add, subtract, multiply and divide algebraic fractions - Solve equations involving algebraic fractions - Be able to form and solve equations and inequalities with fractions - Use algebraic proof - Pupils will understand how to use and calculate with surds and upper and lower bounds	- KS3 work on solving equations - Y10 Autumn - work on solving equations and inequalities	- This topic is widening the array of equations and inequalities which pupils can solve. This is developed further at A level.
Trigonometry	Autumn	- Use sine, cosine and tangent ratios to calculate missing aides and angles in rightangled triangles. - Calculate sides in right-angled triangles using Pythagoras' Theorem. - Use Trigonometry and Pythagoras in 3D	- Y9 Similar shapes and enlargement	- Using trigonometry and Pythagoras/ Theorem to calculate missing sides and angles in any triangle.
Further Trigonometry	Autumn	- Accuracy and bounds - Graphs of trigonometric functions - Further trigonometry - Area of a triangle using $0.5 a b \sin C$ - Sine rule - Cosine rule - Trigonometry without a calculator - 3D trigonometry	- Y9 legacy SOW Trigonometry	- Using upper and lower bounds to complete calculations. - Transformations of functions. - Use sin cos and tan to calculate angles of any size.

Further Algebra	Autumn	- Understanding of inverse operations to rearrange formulae. - Apply understanding of the four basic operations to algebraic fractions. - Factorising expressions as parts of fractions and simplifying fractions involving algebra. - Learn new skills with surds such as rationalising the denominator, particularly the more challenging type where the denominator has more than one term. - Solving equations that have one, or more, algebraic fraction included in the problem. - Introduction to function notation. - Working with compound and inverse functions. - Using algebraic manipulation to prove certain mathematical statements are true.	- Y8 Autumn - Multiplying and Dividing Fractions - Y9 Autumn - Forming and Solving Equations - Y10 Summer - Quadratics, expanding more than two brackets, sketching graphs, graphs of circles, cubes and quadratics	- Solving increasingly challenging questions where rearranging complex formulas is necessary such as using the cosine rule. - Solving complex ratio and quadratic equations which include algebraic fractions. - Simplifying answers to a variety of questions involving surds, e.g. trigonometry problems in Paper 1 - Linking function notation and basic notation for graphs with the aim of realising they are interchangeable.
Vectors and Proof	Autumn	- Understand and use vector notation, including column notation, and understand and interpret vectors as displacement in the plane with an associated direction. - Understand that 2 a is parallel to a and twice its length, and that \mathbf{a} is parallel to -a in the opposite direction. - Represent vectors, combinations of vectors and scalar multiples in the plane pictorially.	- Y9 Autumn - Testing Conjectures - Y9 Spring - Pythagoras' Theorem	- Developing understanding of Vectors at A Level. - Problem Solving with Vectors at A Level.

- Calculate the sum of two vectors, the difference of two vectors and a scalar multiple of a vector using column vectors (including algebraic terms).
- Find the length of a vector using Pythagoras' Theorem.
- Calculate the resultant of two vectors.
- Solve geometric problems in 2D where vectors are divided in a given ratio.
- Produce geometrical proofs to prove points are collinear and vectors/lines are parallel.
- Interpret and analyse transformations of graphs of functions and write the functions algebraically, e.g. write the equation of $f(x)+$ a, or $f(x-a)$
- Apply to the graph of $y=f(x)$ the

Proportion
Spring transformations $y=-f(x), y=f(-x)$ for linear, quadratic, cubic function

- Apply to the graph of $y=f(x)$ the transformations $y=f(x)+a, y=f(x+a)$ for linear, quadratic, cubic functions;
- Estimate area under a quadratic or other graph by dividing it into trapezia
- Y10 Autumn Transformations - Y10 Autumn - Quadratic, Cubic and other Graphs
- Y9 Summer - Solving Ratio and Proportion Problems
- Develop understanding of transformations of graphs (including the modulus function) at A Level.
- Recognise and interpret graphs showing direct and inverse proportion;
- Identify direct proportion from a table of values, by comparing ratios of values, for
- $\quad x$ squared and x cubed relationships;
- Write statements of proportionality for quantities proportional to the square, cube or other power of another quantity;
- Set up and use equations to solve word and other problems involving direct proportion;
- Use y $=k x$ to solve direct proportion problems, including questions where students find k, and then use k to find another value;
- Solve problems involving inverse proportion using graphs by plotting and reading values from graphs;
- Solve problems involving inverse proportionality;
- Set up and use equations to solve word and other problems involving direct proportion or inverse proportion.

Key

